Recent experiments allow one to conclude that Bell-type inequalities are indeed violated; thus, it is important to understand what this means and how we can explain the existence of strong correlations between outcomes of distant measurements. Do we have to announce that Einstein was wrong, Nature is non-local and non-local correlations are produced due to quantum magic and emerge, somehow, from outside space-time? Fortunately, such conclusions are unfounded because, if supplementary parameters describing measuring instruments are correctly incorporated in a theoretical model, then Bell-type inequalities may not be proved. We construct a simple probabilistic model allowing these correlations to be explained in a locally causal way. In our model, measurement outcomes are neither predetermined nor produced in an irreducibly random way. We explain why, contrary to the general belief, the introduction of setting-dependent parameters does not restrict experimenters' freedom of choice. Since the violation of Bell-type inequalities does not allow the conclusion that Nature is non-local and that quantum theory is complete, the Bohr-Einstein quantum debate may not be closed. The continuation of this debate is important not only for a better understanding of Nature but also for various practical applications of quantum phenomena.This article is part of the themed issue 'Second quantum revolution: foundational questions'.