Lipid peroxidation is known to be an important factor in the pathologies of many diseases associated with oxidative stress. We assessed the lipid peroxidation induced by the reaction of ferritin with H2O2. When linoleic acid micelles or phosphatidyl choline liposomes were incubated with ferritin and H2O2, lipid peroxidation increased in the presence of ferritin and H2O2 in a concentration-dependent manner. The hydroxyl radical scavengers, azide and thiourea, prevented lipid peroxidation induced by the ferritin/H2O2 system. The iron specific chelator desferoxamine also prevented ferritin/H2O2 systemmediated lipid peroxidation. These results demonstrate the possible role of iron in ferritin/H2O2 system-mediated lipid peroxidation. Carnosine is involved in many cellular defense processes, including free radical detoxification. In this study, carnosine, homocarnosine, and anserine were shown to significantly prevent ferritin/H2O2 system-mediated lipid peroxidation and also inhibited the free radical-generation activity of ferritin. These results indicated that carnosine and related compounds may prevent ferritin/H2O2 system-mediated lipid peroxidation via free radical scavenging. [BMB reports 2010; 43(3): 219-224]