Epstein-Barr virus is a ubiquitous human herpesvirus associated with epithelial and lymphoid tumors. EBV is transmitted between human hosts in saliva and must cross the oral mucosal epithelium before infecting B lymphocytes, where it establishes a life-long infection. The latter process is well understood because it can be studied in vitro, but our knowledge of infection of epithelial cells has been limited by the inability to infect epithelial cells readily in vitro or to generate cell lines from EBV-infected epithelial tumors. Because epithelium exists as a stratified tissue in vivo, organotypic cultures may serve as a better model of EBV in epithelium than monolayer cultures. Here, we demonstrate that EBV is able to infect organotypic cultures of epithelial cells to establish a predominantly productive infection in the suprabasal layers of stratified epithelium, similar to that seen with Kaposi's-associated herpesvirus. These cells did express latency-associated proteins in addition to productive-cycle proteins, but a population of cells that exclusively expressed latency-associated viral proteins could not be detected; however, an inability to infect the basal layer would be unlike other herpesviruses examined in organotypic cultures. Furthermore, infection did not induce cellular proliferation, as it does in B cells, but instead resulted in cytopathic effects more commonly associated with productive viral replication. These data suggest that infection of epithelial cells is an integral part of viral spread, which typically does not result in the immortalization or enhanced growth of infected epithelial cells but rather in efficient production of virus.Epstein-Barr virus | epithelial | organotypic culture | productive replication A lthough the association between Epstein-Barr virus and epithelial malignancies has been known for more than three decades, the EBV life cycle within the epithelial milieu is still only poorly understood. In contrast, our broad understanding of the biology of EBV within the B-cell compartment has been facilitated by the ability of EBV to infect and immortalize primary B cells in vitro and by the ability of some EBV-positive B-cell tumors to give rise to cell lines that maintain restricted programs of latency gene expression similar to those seen in vivo. Although in primary EBV infection the entire complement of EBV latencyassociated nuclear proteins (EBNAs 1, 2, 3A, 3B, 3C, and LP) and membrane proteins (LMPs 1, 2A, and 2B) promote cellular proliferation and survival (Latency III), EBV gene expression must be progressively silenced (Latency II; EBNA1 and LMPs 1 and 2) so that the most restricted program, Latency 0 (in which EBV gene expression is believed to be completely silenced