One of the most important sections of nonlinear wave theory is related to the collisions of single pulses. These often exhibit corpuscular properties. For example, it is well known that solitons described by the Korteweg-de Vries equation and a few other conservative model equations exhibit properties of elastic particles, while shock waves described by dissipative models like Burgers' equation stick together as absolutely inelastic particles when colliding. The interactions of single pulses in media with modular nonlinearity considered here reveal new physical features that are still poorly understood. There is an analogy between the single pulses collision and the interaction of clots of chemical reactants, such as fuel and oxidant, where the smaller component disappears and the larger one decreases after a reaction. At equal "masses" both clots can be annihilated. In this work various interactions of two and three pulses are considered. The conditions for