Correlation between phase behaviors of a Lennard-Jones fluid in and outside a pore is examined over wide thermodynamic conditions by grand canonical Monte Carlo simulations. A pressure tensor component of the confined fluid, a variable controllable in simulation but usually uncontrollable in experiment, is related with the pressure of a bulk homogeneous system in equilibrium with the confined system. Effects of the pore dimensionality, size, and attractive potential on the correlations between thermodynamic properties of the confined and bulk systems are clarified. A fluid-wall interfacial tension defined as an excess grand potential is evaluated as a function of the pore size. It is found that the tension decreases linearly with the inverse of the pore diameter or width.