Ziel dieser Dissertation ist es, die Gleichgewichts- und Nichtgleichgewichts-Eigenschaften des stark wechselwirkenden QGP-Mediums nahe dem Phasenübergang unter extremen Bedingungen von hohen T und hohen Baryonendichten mit Hilfe der kinetischen Theorie im Rahmen von effektiven Modellen zu untersuchen. Wir werden zunächst die thermodynamischen und Transporteigenschaften des QGPs in der Nähe des Gleichgewichts auf der Basis des DQPM im Bereich moderater chemischer Baryonenpotentiale μB ≥ 0.5 GeV untersuchen. Insbesondere werden die EoS und die Schallgeschwindigkeit sowie die Transportkoeffizienten des QGP auf der Grundlage des DQPM bei endlichen T und μB berechnet. Transportkoeffizienten sind besonders interessant, da sie Informationen über die Wechselwirkungen im Medium erlauben, das im Gleichgewicht durch eine Temperatur T und ein chemisches Potential μB charakterisiert werden kann. Unter Berücksichtigung der Transportkoeffizienten und der EoS der QGP-Phase vergleichen wir unsere Ergebnisse mit verschiedenen Resultaten aus der Literatur, in denen Transportkoeffizienten des QGPs auf Basis von effektiven Modellen vorwiegend bei Null oder kleinem chemischen Potentialen untersucht wurden. Darüber hinaus werden in Kapitel 3 die Gleichgewichtseigenschaften des QGPs und insbesondere die Auswirkungen der μB-Abhängigkeit der thermodynamischen und Transporteigenschaften des QGPs im Rahmen des erweiterten PHSD-Transportansatzes untersucht, der die vollständige Entwicklung des Systems einschließlich der partonischen Phase umfasst. Die Entwicklung des PHSD-Transportansatzes wird in der partonischen Phase erweitert, indem explizit die gesamt- und differentiellen partonischen Streuquerschnitte auf der Grundlage des DQPM berechnet und bei der tatsächlichen Temperatur T und dem baryonischen chemischen Potential μB in jeder einzelnen Raum-Zeit-Zelle, in der die partonische Streuung stattfindet, ausgewertet werden. Um die Spuren der μB-Abhängigkeit des QGPs in den Observablen zu untersuchen, werden die Ergebnisse von PHSD5.0 (mit μB-Abhängigkeiten) mit den Ergebnissen von PHSD5.0 für μB = 0 sowie mit PHSD4.0, in dem die Massen/Breiten der Quarks und Gluonen sowie deren Wechselwirkungsquerschnitte nur von T abhängen, verglichen. Wir diskutieren die PHSD-Ergebnisse für verschiedene Observablen: (i) Rapiditäts- und pT -Verteilungen von identifizierten Hadronen für symmetrische Au+Au- und Pb+Pb- Kollisionen bei Energien von 30 AGeV (zukünftige NICA-Energie) sowie für die RHIC-Spitzenenergie von √sNN = 200 GeV; (ii) gerichteter Fluss v1 von identifizierten Hadronen für Au + Au bei invarianter Energie √sNN = 27 GeV und 200 GeV; (iii) elliptischer Fluss v2 der identifizierten Hadronen für Au+Au bei invarianten Energien √sNN = 27 und 200 GeV. Der Vergleich der "Bulk"-Observablen für Au+Au-Kollisionen innerhalb der drei PHSD-Einstellungen hat gezeigt, dass sie eine recht geringe Empfindlichkeit gegenüber den μB -Abhängigkeiten der Partoneigenschaften (Massen und Breiten) und ihrer Wechselwirkungsquerschnitte aufweisen, sodass die Ergebnisse von PHSD5.0 mit und ohne μB sehr nahe beieinander liegen. Nur im Fall von Kaonen, Antiprotonen ̄p und Antihyperonen ̄Λ + ̄Σ0 konnte ein kleiner Unterschied zwischen PHSD4.0 und PHSD5.0 bei den höchsten SPS- und RHIC-Energien festgestellt werden. Wir finden nur geringe Unterschiede zwischen den Ergebnissen von PHSD4.0 und PHSD5.0 für die hier betrachteten hadronischen Observablen sowohl bei hohen als auch bei mittleren Energien. Dies hängt damit zusammen, dass bei hohen Energien, wo die Materie vom QGP dominiert wird, ein sehr kleines chemisches Baryonenpotential μB in zentralen Kollisionen bei mittlerer Rapidität gemessen wird, während mit abnehmender Energie und größerem μB der Anteil des QGPs rapide abnimmt, sodass die endgültigen Beobachtungswerte insgesamt von den Hadronen dominiert werden, die an der hadronischen Rückstreuung teilgenommen haben, und somit die Information über ihren QGP-Ursprung verwaschen oder verloren geht. In Kapitel 4 betrachten wir die Transportkoeffizienten von QGP-Materie im erweiterten Polyakov-NJL-Modell entlang der Übergangslinie für moderate Werte des chemischen Baryonenpotenzials 0 ≤ μB ≤ 0.9 GeV sowie in der Nähe des kritischen Endpunkts(CEP) und bei großem chemischen Baryonenpotenzial μB = 1.2 GeV, wo ein Phasenübergang erster Ordnung stattfindet. Wir untersuchen, wie die Natur der Freiheitsgrade die Transporteigenschaften des QGPs beeinflusst. Darüber hinaus demonstrieren wir die Auswirkungen des Phasenübergangs erster Ordnung und des CEP auf die Transportkoeffizienten im dekonfinierten QCD-Medium. Darüber hinaus wird in Kapitel 5 eine phänomenologische Erweiterung des DQPM auf große baryonchemische Potentiale μB einschließlich der Region mit einem möglichen CEP und späterem Phasenübergang erster Ordnung betrachtet. Eines der wichtigsten Merkmale des Modells ist das Auftreten einer ’kritischen‘ Skalierung in der Nähe des CEP. Das Hauptziel des vorgestellten Modells besteht darin, die mikroskopischen und makroskopischen Eigenschaften der partonischen Freiheitsgrade für den Bereich des Phasendiagramms bereitzustellen, der durch moderates T und moderates oder hohes μB gekennzeichnet ist. ...