This paper presents the results of computational and experimental studies of the temperature along the shock adiabat for three polymers. Measurements of the brightness temperatures of shock-compressed epoxy resin and polymethylmethacrylate and the brightness and color temperatures of shock-compressed polytetrafluoroethylene were carried out. The temperatures of the shock-compressed polymethylmethacrylate were determined in the range 1390–1900 K for shock pressures of 22–39 GPa. Similar measurements performed for epoxy resin in the pressure range of 18–40 GPa showed values of 940–1900 K, and the temperatures of polytetrafluoroethylene in the pressure range of 30–50 GPa were equal to 2000–3200 K. The equation of state for the three polymers with a nonspherical strain tensor was constructed to describe shock-wave and high-temperature processes in a wide range of thermodynamic parameters. In the proposed model, two Grüneisen parameters were used: the thermodynamic parameter corresponding to intrachain vibrations and the lattice parameter representing the contribution of interchain vibrations. The brightness temperatures of shocked-compressed polymethylmethacrylate and epoxy resin showed a good agreement with calculations using the proposed model and with the results of earlier calculation methods. Time dependences of the observed intensity of light were used to determine the absorption coefficients of the shocked polymers and estimate the effective thickness of the radiating layer. A typical feature of all the polymers is the width of the radiating layer of 0.8 to 2.5 mm, depending on the material and shock pressure.