2013
DOI: 10.1007/s00012-013-0256-x
|View full text |Cite
|
Sign up to set email alerts
|

Equations implying congruence n-permutability and semidistributivity

Abstract: Abstract. T. Dent, K. Kearnes andÁ. Szendrei have defined the derivative, Σ , of a set of equations Σ and shown, for idempotent Σ, that Σ implies congruence modularity if Σ is inconsistent (Σ |= x ≈ y). In this paper we investigate other types of derivatives that give similar results for congruence n-permutable for some n, and for congruence semidistributivity.

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1
1

Citation Types

0
6
0

Year Published

2014
2014
2020
2020

Publication Types

Select...
4
1

Relationship

0
5

Authors

Journals

citations
Cited by 6 publications
(6 citation statements)
references
References 12 publications
0
6
0
Order By: Relevance
“…Kearnes and Kiss [16, Problem P6] have asked whether this characterization is valid for all idempotent varieties. Freese [6,Theorem 8] has recently given a partial confirmation by verifying the equivalence for idempotent linear varieties. In Section 3, we answer the question of Kearnes and Kiss affirmatively.…”
Section: Introductionmentioning
confidence: 99%
“…Kearnes and Kiss [16, Problem P6] have asked whether this characterization is valid for all idempotent varieties. Freese [6,Theorem 8] has recently given a partial confirmation by verifying the equivalence for idempotent linear varieties. In Section 3, we answer the question of Kearnes and Kiss affirmatively.…”
Section: Introductionmentioning
confidence: 99%
“…Unfortunately, we are not able to establish the version of Theorem 1.4(ii) for the filters from the chain. We would also like to note that the condition of being n-permutable for some n can be also formulated as 'having no nontrivial compatible partial order'; this have been attributed to Hagemann, for a proof see [Fre13].…”
Section: Having N-permutable Congruencesmentioning
confidence: 99%
“…Dent, Kearnes and Szendrei also suggested in [3] that alternative notions of "derivative" might be developed, which could be applied in a similar fashion to other Maltsev properties, such as n-permutability. Ralph Freese ([4]) did just that, by defining the notion of order derivative: 4]). Let Σ be an idempotent set of equations.…”
Section: Definition 22 ([3]mentioning
confidence: 99%
“…If V 1 ∨ V 2 satisfies a nontrivial congruence identity, then either V 1 or V 2 satisfies a nontrivial congruence identity. [4] created an ordered version of the derivative introduced in [3] and used it to establish, for the property of being n-permutable for some n, some results that are analogous to the ones established in [3] for modularity. Here we make use of the results in [4] to also establish the following result: Theorem 1.3.…”
Section: Introductionmentioning
confidence: 99%
See 1 more Smart Citation