We consider the relative group presentation P = G, x|r where x = {x} and r = {xg 1 xg 2 xg 3 x −1 g 4 }. We show modulo a small number of exceptional cases exactly when P is aspherical. If H = g −1 1 g 2 , g −1 1 g 3 g 1 , g 4 ≤ G then the exceptional cases occur when H is isomorphic to one of C 5 , C 6 , C 8 or C 2 × C 4 . Mathematics Subject Classification: 20F05, 57M05.