2018
DOI: 10.3390/axioms7040084
|View full text |Cite
|
Sign up to set email alerts
|

Equicontinuity, Expansivity, and Shadowing for Linear Operators

Abstract: We prove that a linear operator of a complex Banach space has a shadowable point if and only if it has the shadowing property. In addition, every equicontinuous linear operator does not have the shadowing property and its spectrum is contained in the unit circle. Finally, we prove that if a linear operator is expansive and has the shadowing property, then the origin is the only nonwandering point.

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2022
2022
2022
2022

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
references
References 10 publications
0
0
0
Order By: Relevance