We show that for any weakly convergent sequence of ergodic SL2(R)-invariant probability measures on a stratum of unit-area translation surfaces, the corresponding Siegel-Veech constants converge to the Siegel-Veech constant of the limit measure. Together with a measure equidistribution result due to Eskin-Mirzakhani-Mohammadi, this yields the (previously conjectured) convergence of sequences of Siegel-Veech constants associated to Teichmüller curves in genus two.The proof uses a recurrence result closely related to techniques developed by Eskin-Masur. We also use this recurrence result to get an asymptotic quadratic upper bound, with a uniform constant depending only on the stratum, for the number of saddle connections of length at most R on a unit-area translation surface.