The present study deals with the analysis and adsorption of Basic Yellow 28 (BY28) onto low-cost natural red clay (NRC). Adsorbent characterized by XRD, SEM, TG/DTA, BET and BJH. The effect of the contact time, the temperature, the initial concentration, the pH and the adsorbent mass and on adsorption process were investigated using by batch adsorption technique and then the adsorption isotherm, kinetics, thermodynamics and equilibrium studies were performed. The pH effect on the removal of BY28 efficiency was not important. It was found that the isotherm model best suited to the equilibrium data obtained from the adsorption of BY28 on NRC was the pseudo-second order. It was found that the kinetic model best suited to the data obtained from the adsorption of BY28 on NRC was the Langmuir model. The maximum monolayer adsorption capacity was 370 mg. g-1. In the thermodynamic studies, it can be said that the adsorption of BY28 onto NRC takes place spontaneously, physically and endothermic ally. Finally, the use of NRC shows a greater potential for the removal of cationic dyes, as no costly equipment is required.