Abstract-In this work, the mathematical theory of elasticity has been used to formulate and derive from fundamental principles, the first order shear deformation theory originally presented by Mindlin using variational calculus. A relaxation of the Kirchhoff's normality hypothesis was used to account for the effect of the transverse shear strains in the behaviour of the plate. This made the resulting theory appropriate for use for moderately thick plates. A simultaneous use of the strain-displacement relations for small-deformation elasticity, stress-strain laws and the stress differential equations of equilibrium was used to obtain the differential equations of static flexure for Mindlin plates in terms of three unknown generalised displacements. The equations were found to be coupled in the unknown displacements; but reducible to the Kirchhoff plate equations when the removed Kirchhoff normality hypothesis was introduced. This showed the Kirchhoff plate theory to be a specialization of the Mindlin plate theory. The theory of elasticity foundations of the Mindlin and Kirchhoff plate theories are thus highlighted.