2022
DOI: 10.1609/aaai.v36i11.21578
|View full text |Cite
|
Sign up to set email alerts
|

Equilibrium Learning in Auction Markets

Abstract: My dissertation investigates the computation of Bayes-Nash equilibria in auctions via multiagent learning. A particular focus lies on the game-theoretic analysis of learned gradient dynamics in such markets. This requires overcoming several technical challenges like non-differentiable utility functions and infinite-dimensional strategy spaces. Positive results may open the door for wide-ranging applications in Market Design and the economic sciences.

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 3 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?