Tendons connect muscle to bone and play an integral role in bone and joint alignment and loading. Tendons act as pulleys that provide anchorage of muscle forces for joint motion and stability, as well as for fracture reduction and realignment. Patients that experience complex fractures also have concomitant soft tissue injuries, such as tendon damage or rupture. Tendon injuries that occur at the time of bone fracture have long-term ramifications on musculoskeletal health, yet these injuries are often disregarded in clinical treatment and diagnosis for patients with bone fractures as well as in basic science approaches for understanding bone repair processes. Delayed assessment of soft tissue injuries during evaluation of trauma can lead to chronic pain, dysfunction, and delayed bone healing even following successful fracture repair, highlighting the importance of identifying and treating damaged tendons early. Treatment strategies for bone repair, such as mechanical stabilization and biological therapeutics, can impact tendon healing and function. Because poor tendon healing following complex fracture can significantly impact the function of tendon during bone fracture healing, a need exists to understand the healing process of complex fractures more broadly, beyond the healing of bone. In this review, we explored the mechanical and biological interaction of bone and tendon in the context of complex fracture, as well as the relevance and potential ramifications of tendon damage following bone fracture, which has particular impact on patients that experience complex fractures, such as from combat, automobile accidents, and other trauma.