1992
DOI: 10.1016/0009-2614(92)80136-y
|View full text |Cite
|
Sign up to set email alerts
|

Equivalence between dynamical averaging methods of the Schrödinger equation: average Hamiltonian, secular averaging, and Van Vleck transformation

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
4
1

Citation Types

0
34
0

Year Published

1994
1994
2014
2014

Publication Types

Select...
3
2
2

Relationship

0
7

Authors

Journals

citations
Cited by 47 publications
(34 citation statements)
references
References 24 publications
0
34
0
Order By: Relevance
“…Our design method neglects the off-resonance term generated by each rotating frame construction; however, in general corrections to lowest order in the resonance offset for counter-rotating waves (for example, the BlochSiegert shift 20 ) can be found using (e.g.) average Hamiltonian theory, 21,22 the Magnus expansion, 23,24 or the Floquet expansion, 25,26 and included in the effective Hamiltonian in each constructed frame. Note that with corrections for offresonance terms, (1) can be adjusted by adding the lowest order z-and x-component corrections to ω k−1 and u k−1 , respectively.…”
Section: A Pulse Design Using Four Nutating Framesmentioning
confidence: 99%
“…Our design method neglects the off-resonance term generated by each rotating frame construction; however, in general corrections to lowest order in the resonance offset for counter-rotating waves (for example, the BlochSiegert shift 20 ) can be found using (e.g.) average Hamiltonian theory, 21,22 the Magnus expansion, 23,24 or the Floquet expansion, 25,26 and included in the effective Hamiltonian in each constructed frame. Note that with corrections for offresonance terms, (1) can be adjusted by adding the lowest order z-and x-component corrections to ω k−1 and u k−1 , respectively.…”
Section: A Pulse Design Using Four Nutating Framesmentioning
confidence: 99%
“…Some of the techniques are reviewed in Refs. [38,39,40]; a few of the difficulties are summarized here. It is not immediately clear to what order the perturbation expansion in Eq.…”
Section: The Hamiltonians Of Nmr 23mentioning
confidence: 99%
“…A rigorous quantum-mechanical derivation of the magnetic dipole-dipole coupling Hamiltonian without the contact term yields: 39) where ω 12 D = − µ 0 4π γ 1 γ 2 r −3 . Eq.…”
Section: The Hamiltonians Of Nmr 31mentioning
confidence: 99%
See 2 more Smart Citations