Purpose: To optimize a complex reactive system involving a consecutive first-order reaction in a Continuously Stirring Tank Reactor (CSTR) using the Direct Entropy Minimization (DEM) methodology, focusing on identifying operational conditions that minimize entropy generation.
Theoretical Framework: In chemical engineering, the efficient management process reactions in a CSTR is crucial. Traditionally, this leads to multiple operational points, which may not be optimal in terms of entropy generation. The DEM approach provides a novel perspective in determining the most efficient operational conditions by focusing on entropy production.
Method: The study employs the DEM methodology to analyze a CSTR system involved in consecutive first-order reactions. By conducting mass, enthalpy, and entropy balances, the process is optimized, leading to a model that effectively describes the system’s entropy production rate. This method focuses on establishing an optimal relationship between inlet and reaction temperatures to achieve the lowest possible entropy production.
Results and Conclusion: The application of DEM identified the global optimal operational condition, contrasting with the multiple conditions suggested by classical methods. This indicates a significant improvement in process performance and efficiency under minimum entropy production conditions.
Research Implications: This study emphasizes the importance of entropy management in chemical reaction engineering. The findings demonstrate that a systematic approach to minimizing entropy can lead to significant improvements in process efficiency and sustainability, suggesting a paradigm shift in how chemical processes are optimized.
Originality/Value: This research emphasizes the effectiveness of the DEM methodology in optimizing chemical reactions in a CSTR. The approach is innovative in reducing entropy generation, a key factor for sustainable and efficient chemical process operations.