2002
DOI: 10.1016/s0362-546x(01)00758-1
|View full text |Cite
|
Sign up to set email alerts
|

Equivalence classes for Emden equations

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
25
0
2

Year Published

2003
2003
2021
2021

Publication Types

Select...
6

Relationship

0
6

Authors

Journals

citations
Cited by 7 publications
(27 citation statements)
references
References 14 publications
0
25
0
2
Order By: Relevance
“…This classification is more general than all previous ones. The relation between the (pseudo)invariants from works [20,21] and the semiinvariants from works [4,14] (as they were presented in [2]) was shown in paper [11] and here in Section 7. Moreover, in all possible cases the set of the invariants can be broadened.…”
Section: Introductionmentioning
confidence: 83%
See 1 more Smart Citation
“…This classification is more general than all previous ones. The relation between the (pseudo)invariants from works [20,21] and the semiinvariants from works [4,14] (as they were presented in [2]) was shown in paper [11] and here in Section 7. Moreover, in all possible cases the set of the invariants can be broadened.…”
Section: Introductionmentioning
confidence: 83%
“…In work of E. Cartan [4] the notations P = −a 4 , Q = −a 3 , R = −a 2 , S = −a 1 , A = −L 1 , B = −L 2 were adopted, where L 1 and L 2 are the components of the projective curvature tensor. In the work of R.Liouville [14] there were provided the semiinvariants ν 5 , w 1 , i 2 , and the parameter R 1 (see review [2]). Relations between them and the pseudoinvariants F , Ω, N and the component H are as follows,…”
Section: Relation Between the Semiinvariantsmentioning
confidence: 99%
“…Лиувилль в работе [14] построил полуинварианты ν 5 , w 1 , i 2 , а также величину R 1 (более подробный обзор его результатов содержится в работе [24]). Здесь мы при-водим связь между ними и псевдоинвариантами F , Ω, N , а также величиной H -второй компонентой псевдовекторного поля β:…”
Section: шаг 7 псевдовекторные поля α = (B −A)unclassified
“…Сами выражения для X 1 и X 2 очень громоздкие, поэтому они вынесены в приложение Б. Из предпоследнего шага редукции многочленов P 1 (x, y) и P 2 (x, y) по переменной y выразим y через инварианты J 1 , J 4 и переменную x. В силу представления (24) получаем выражение для y:…”
Section: 2unclassified
“…Pseudoinvariant of weight m is a certain function depending on (x, y) that is transformed under (2) with factor det T (the Jacobi determinant) in the degree m:…”
Section: Introductionmentioning
confidence: 99%