Intrabody communication (IBC) is a wireless communication technology using the human body to develop body area networks (BANs) for remote and ubiquitous monitoring. IBC uses living tissues as a transmission medium, achieving power-saving and miniaturized transceivers, making communications more robust against external interference and attacks on the privacy of transmitted data. Due to these advantages, IBC has been included as a third physical layer in the IEEE 802.15.6 standard for wireless body area networks (WBANs) designated as Human Body Communication (HBC). Further research is needed to compare both methods depending on the characteristics of IBC application. Challenges remain for an optimal deployment of IBC technology, such as the effect of long-term use in the human body, communication optimization through more realistic models, the influence of both anthropometric characteristics and the subject's movement on the transmission performance, standardization of communications, and development of small-size and energy-efficient prototypes with increased data rate. The purpose of this work is to provide an indepth overview of recent advances and future challenges in human body/intrabody communication for wireless communications and mobile computing.