The equivariant real, complex and quaternionic vector fields on spheres problem is reduced to a question about the equivariant J -groups of the projective spaces. As an application of this reduction, we give a generalization of the results of Namboodiri [U. Namboodiri, Equivariant vector fields on spheres, Trans. Amer. Math. Soc. 278 (2) (1983) 431-460], on equivariant real vector fields, and Ön-der [T. Önder, Equivariant cross sections of complex Stiefel manifolds, Topology Appl. 109 (2001) 107-125], on equivariant complex vector fields, which avoids the restriction that the representation containing the sphere has enough orbit types.