The monitoring of intracellular cholesterol homeostasis and trafficking is of great importance because their imbalance leads to many pathologies. Reliable tools for cholesterol detection are in demand. This study presents the design and synthesis of fluorescent probes for cholesterol recognition and demonstrates their selectivity by a variety of methods. The construction of dedicated library of 14 probes was based on heterocyclic (pyridine)-sterol derivatives with various attached fluorophores. The most promising probe, a P1-BODIPY conjugate FP-5, was analyzed in detail and showed an intensive labeling of cellular membranes followed by intracellular redistribution into various cholesterol rich organelles and vesicles. FP-5 displayed a stronger signal, with faster kinetics, than the commercial TF-Chol probe. In addition, cells with pharmacologically disrupted cholesterol transport, or with a genetic mutation of cholesterol transporting protein NPC1, exhibited strong and fast FP-5 labeling in the endo/lysosomal compartment, co-localizing with filipin staining of cholesterol. Hence, FP-5 has high potential as a new probe for monitoring cholesterol trafficking and its disorders.Significance statementCholesterol is a vital steroid molecule with many important functions in animal cells. Although its dysregulation is associated with an expanding list of clinically important pathologies, the study of its role is limited by a lack of reliable tools for live intracellular monitoring. This study demonstrates the applicability of a novel class of heterocyclic sterol probes. These probes exhibit fast cellular uptake with effective fluorescence labeling of sterol species in a variety of living cells, without a need for artificial carriers. When applied to Niemann-Pick disease type C1 cells, they identified massive accumulation of cholesterol in the endosome/lysosome compartment. Thus, several probes from the same series can also be used for visualizing lysosomal storage disorders and sterol transporting pathologies.