2020
DOI: 10.1016/j.mseb.2020.114796
|View full text |Cite
|
Sign up to set email alerts
|

Erbium-chromium substituted strontium hexaferrite particles: Characterization of the physical and Ku-band microwave absorption properties

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

1
7
0

Year Published

2021
2021
2024
2024

Publication Types

Select...
6
1

Relationship

1
6

Authors

Journals

citations
Cited by 32 publications
(8 citation statements)
references
References 36 publications
1
7
0
Order By: Relevance
“…The substitutions for Fe 3+ of BaM-based can be divided into two main approaches: covalent cation substitution, such as Ga 3+ , In 3+ ; and Er 3+ and hetervalent cationic combination, such as Co 2+ -Ti 4+ , Co 2+ -Zr 4+ , and Ni 2+ -Ti 4+ [22][23][24][25][26]. However, recent studies have shown that the introduction of high-valence ions destroys the valence state equilibrium of barium ferrite, resulting in multiple absorption peaks, which can increase the bandwidth of electromagnetic wave absorption of the material [27][28][29].…”
Section: Introduction mentioning
confidence: 99%
“…The substitutions for Fe 3+ of BaM-based can be divided into two main approaches: covalent cation substitution, such as Ga 3+ , In 3+ ; and Er 3+ and hetervalent cationic combination, such as Co 2+ -Ti 4+ , Co 2+ -Zr 4+ , and Ni 2+ -Ti 4+ [22][23][24][25][26]. However, recent studies have shown that the introduction of high-valence ions destroys the valence state equilibrium of barium ferrite, resulting in multiple absorption peaks, which can increase the bandwidth of electromagnetic wave absorption of the material [27][28][29].…”
Section: Introduction mentioning
confidence: 99%
“…We also used the low of approach to saturation (LAS) relation to figure out the temperature dependence of M S and H C of the ferrite nanoparticles. The LAS equation is used in high field region and it is written as [43,44]…”
Section: Magnetic Propertiesmentioning
confidence: 99%
“…[215] Efforts have been made to enhance the magnetic characteristics of hexaferrite by cationic substitution to meet a variety of applications. [148,216] These includes efforts on altering the intrinsic properties of hexaferrites by replacing with either single or multiple trivalent metal ions such as La 3+ , [217][218][219][220][221] Tb 3+ , [222,223] Nd 3+ , [138][139][140][224][225][226] Eu 3+ , [227] Dy 3+ , [228,229] Sm 3+ , [230,231] Cr 3+ , [232,233] Al 3+ , [185,186,234,235] Gd 3+ , [236][237][238] Sc 3+ , [239] Er 3+ , [240][241][242] Pr 3+ , [243] Yb 3+ , [244] Ce 3+ , [245] La 3+ -Pr 3+ , [246] La 3+ -Nd 3+ , [247] Nd 3+ -Sm 3+ , [248] Nb 3+ -Y 3+ , [249] La 3+ -Ce 3+ , [250] Er 3+ -Cr 3+ , [251] Dy 3+ -Nd 3+ -Pr 3+ [252] or a suitable mix of divalent and trivalent ions such as Tb 3+ -Mn 2+ , …”
Section: Properties Of Hexagonal Ferritesmentioning
confidence: 99%
“…[ 215 ] Efforts have been made to enhance the magnetic characteristics of hexaferrite by cationic substitution to meet a variety of applications. [ 148,216 ] These includes efforts on altering the intrinsic properties of hexaferrites by replacing with either single or multiple trivalent metal ions such as La 3+ , [ 217–221 ] Tb 3+ , [ 222,223 ] Nd 3+ , [ 138–140,224–226 ] Eu 3+ , [ 227 ] Dy 3+ , [ 228,229 ] Sm 3+ , [ 230,231 ] Cr 3+ , [ 232,233 ] Al 3+ , [ 185,186,234,235 ] Gd 3+ , [ 236–238 ] Sc 3+ , [ 239 ] Er 3+ , [ 240–242 ] Pr 3+ , [ 243 ] Yb 3+ , [ 244 ] Ce 3+ , [ 245 ] La 3+ –Pr 3+ , [ 246 ] La 3+ –Nd 3+ , [ 247 ] Nd 3+ –Sm 3+ , [ 248 ] Nb 3+ –Y 3+ , [ 249 ] La 3+ –Ce 3+ , [ 250 ] Er 3+ –Cr 3+ , [ 251 ] Dy 3+ –Nd 3+ –Pr 3+[ 252 ] or a suitable mix of divalent and trivalent ions such as Tb 3+ –Mn 2+ , [ 253 ] Nd 3+ –Co 2+ , [ 254 ] Gd 3+ –Co 2+ , [ 255 ] Pr 3+ –Mn 2+ , [ 256 ] Sm 3+ –Co 2+ , [ 257 ] La 3+ –Co 2+ , [ 258 ] La 3+ –Mn 2+ , [ 259 ] Pr 3+ –Co 2+ , [ 260 ] Cu 2+ –Cr 3+ , [ 261 ] Al 3+ –Mg 2+ , [ 262 ] Ce 3+ –Zn 2+ , [ 263 ] Ce 3+ –Co 2+ , [ 264 ] Gd 3+ –Mn 2+ ‐Co 2+ , [ 265 ] Ca 2+ –La 3+ –Co 2+[ 266 ] or tetravalent Zr 4+[ 267 ] or a divalent and tetravalent ions such as Co 2+ –Si 4+ , [ 268 ] Cu 2+ –Zr 4+,[ 269 ] Zr 4+ –Co 2+ , [...…”
Section: Properties Of Hexagonal Ferritesmentioning
confidence: 99%