Dental implants play an important role in oral health. Titanium dental implants must endure the complex microflora environment of the oral cavity. Moreover, bacterial infections have been considered as one of the most important factors of implant failure. The issue of dental improvement through modification of chemical composition and surface treatment has received considerable critical attention. γ-TiAl as a novo biocompatible material revealed a slower corrosion rate in biological media rather Ti-6Al-4V. The objective of this study is to investigate the effect of Er,Cr:YSGG laser on γ-TiAl in comparison with sandblasted and acid-etched samples as the control groups and machined samples. Wettability, surface roughness, surface topography, scanning electron microscopy–energy dispersive X-ray spectrometer analysis of surface and subsurface of samples were investigated and bacteria counts of two periodontal bacterial strains ( Aggregatibacter actinomycetemcomitans and Eikenella corrodens) were evaluated on the Er,Cr:YSGG laser surface-treated sandblasted and acid-etched and machined samples. The results of this investigation show that Er,Cr:YSGG laser surface treatment affects surface roughness, surface topography, wettability, chemical composition of the surface and bacteria count. Scanning electron microscopy–energy dispersive X-ray spectrometer analysis of the sample revealed the increment of titanium and oxygen content and reduction of aluminum content in the surface and subsurface layer. A. actinomycetemcomitans and E. corrodens count were found from the lowest level to highest in the sandblasted and acid-etched samples, laser samples and machined samples, respectively. Using controlled parameters of Er,Cr:YSGG laser ensured no significant adverse alteration. The findings to emerge from this study revealed the significant correlation between microbial count and wettability. Furthermore, the contact angle strongly correlated with surface roughness.