1987
DOI: 10.1007/bf01215225
|View full text |Cite
|
Sign up to set email alerts
|

Ergodicit� et limite semi-classique

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
2
1

Citation Types

3
160
0
4

Year Published

1992
1992
2014
2014

Publication Types

Select...
6
3

Relationship

0
9

Authors

Journals

citations
Cited by 177 publications
(167 citation statements)
references
References 7 publications
3
160
0
4
Order By: Relevance
“…Among the basic facts satisfied by any semiclassical measure, we mention only the two following properties (see [3,7])…”
Section: Quantization and Semiclassical Measuresmentioning
confidence: 99%
See 1 more Smart Citation
“…Among the basic facts satisfied by any semiclassical measure, we mention only the two following properties (see [3,7])…”
Section: Quantization and Semiclassical Measuresmentioning
confidence: 99%
“…This is done via a so-called quantization procedure. There are several possible choices, but it is useful to choose a quantization that respects positivity (see [3,7]) 1 . Thus, for any function a on S * X there exists a pseudodifferential operator Op + (a) of order 0 whose principal symbol is a.…”
Section: Quantization and Semiclassical Measuresmentioning
confidence: 99%
“…In an analogous situation for Schrödinger-Hamiltonians the ergodicity of the associated Hamiltonian flow implies that the Wigner transforms of almost all eigenfunctions equidistribute on the corresponding energy shell. This result, known as quantum ergodicity, goes back to Shnirelman [Shn74] and has been fully proven in [Zel87,CdV85,HMR87]. In the case under study we now suppose that the energy E lies in an interval (E − , E + ), in which the spectrum of the Dirac-Hamiltonian is discrete.…”
Section: Semiclassical Behaviour Of Eigenspinorsmentioning
confidence: 99%
“…le flot géodésique) entraîne que "presque toutes" les fonctions propres se délocalisent asymptotiquement uniformément en espace et en fréquence. En 1987 un résultat analogue a été prouvé par HeIffer-Martinez-Robert ( [8]) pour un opérateur de Schrôdinger semi-classique. Notons que le résultat précédent est en général faux pour une famille non orthonormée de fonctions propres.…”
Section: Introductionunclassified