Chemotherapy-induced neurotoxicity is a significant problem associated with successful treatment of many cancers. Tubulin is a well-established target of antineoplastic therapy; however, tubulin-targeting agents, such as paclitaxel and the newer epothilones, induce significant neurotoxicity. Eribulin mesylate, a novel microtubuletargeting analogue of the marine natural product halichondrin B, has recently shown antineoplastic activity, with relatively low incidence and severity of neuropathy, in metastatic breast cancer patients. The mechanism of chemotherapy-induced neuropathy is not well understood. One of the main underlying reasons is incomplete characterization of pathology of peripheral nerves from treated subjects, either from patients or preclinically from animals. The current study was conducted to directly compare, in mice, the neuropathy-inducing propensity of three drugs: paclitaxel, ixabepilone, and eribulin mesylate. Because these drugs have different potencies and pharmacokinetics, we compared them on the basis of a maximum tolerated dose (MTD). Effects of each drug on caudal and digital nerve conduction velocity, nerve amplitude, and sciatic nerve and dorsal root ganglion morphology at 0.25 Â MTD, 0.5 Â MTD, 0.75 Â MTD, and MTD were compared. Paclitaxel and ixabepilone, at their respective MTDs, produced significant deficits in caudal nerve conduction velocity, caudal amplitude and digital nerve amplitudes, as well as moderate to severe degenerative pathologic changes in dorsal root ganglia and sciatic nerve. In contrast, eribulin mesylate produced no significant deleterious effects on any nerve conduction parameter measured and caused milder, less frequent effects on morphology. Overall, our findings indicate that eribulin mesylate induces less neuropathy in mice than paclitaxel or ixabepilone at equivalent MTD-based doses. Cancer Res; 71(11); 3952-62. Ó2011 AACR.