We revisit electromagnetic field propagation through tight-binding arrays of coupled photonic waveguides, with properties independent of the propagation distance, and recast it as a symmetry problem. We focus our analysis on photonic lattices with underlying symmetries given by three well-known groups, SU (2), SU (1, 1) and Heisenberg-Weyl, to show that disperssion relations, normal states and impulse functions can be constructed following a Gilmore-Perelomov coherent state approach. Furthermore, this symmetry based approach can be followed for each an every lattice with an underlying symmetry given by a dynamical group.