RESUMEN:La representación de amplitud y fase permite obtener ecuaciones diferenciales para la amplitud y el vector de onda. Éstas ecuaciones pueden desacoplarse utilizando el invariante de Ermakov. Para medios estratificados transparentes, se muestra que la componente del vector de onda en la dirección de estratificación , cumple con la relación tan constante, donde es el ángulo de inclinación de propagación. Dicha componente satisface la ecuación diferencial no lineal 2 0, donde es el índice de refracción, es una constante y la magnitud del vector de onda en el vacío. Para variaciones suaves del índice de refracción comparadas con la longitud de onda, la relación anterior deviene en la relación de Snell generalizada sin . En el caso de interfase abrupta entre dos medios homogéneos, se recupera la relación usual de Snell sin sin .
Palabras clave: Propagación en Medios Inhomogéneos, Medios Estratificados, Invariante de CamposComplementarios.
ABSTRACT:The representation of waves in amplitude and phase variables can be decoupled using the Ermakov invariant. The wave vector component in the direction of stratification kz, satisfies the relationship tan constant, where is the angle of propagation. This component must fulfill the nonlinear differential equation 2 0, where is the refractive index, is a constant and the wave vector magnitude in vacuum. For soft variations of the refractive index compared with the wavelength, this relationship becomes the so called generalized Snell relationship sin . For an abrupt interface, the usual Snell equation sin sin is recovered.