Citation analysis of the scientific literature has been used to study and define disciplinary boundaries, to trace the dissemination of knowledge, and to estimate impact. Co-citation, the frequency with which pairs of publications are cited, provides insight into how documents relate to each other and across fields. Co-citation analysis has been used to characterize combinations of prior work as conventional or innovative and to derive features of highly cited publications. Given the organization of science into disciplines, a key question is the sensitivity of such analyses to frame of reference. Our study examines this question using semantically-themed citation networks. We observe that trends reported to be true across the scientific literature do not hold for focused citation networks, and we conclude that inferring novelty using co-citation analysis and random graph models benefits from disciplinary context.
ABSTRACTCitation analysis of the scientific literature has been used to study and define disciplinary boundaries, to trace the dissemination of knowledge, and to estimate impact. Co-citation, the frequency with which pairs of publications are cited, provides insight into how documents relate to each other and across fields. Co-citation analysis has been used to characterize combinations of prior work as conventional or innovative and to derive features of highly cited publications. Given the organization of science into disciplines, a key question is the sensitivity of such analyses to frame of reference. Our study examines this question using semantically-themed citation networks. We observe that trends reported to be true across the scientific literature do not hold for focused citation networks, and we conclude that co-citation analysis requires a contextual perspective.