The authors introduce a new parameterization for the dissipative particle dynamics simulations of lipid bilayers. In this parameterization, the conservative pairwise forces between beads of the same type in two different hydrophobic chains are chosen to be less repulsive than the water-water interaction, but the intrachain bead interactions are the same as the water-water interaction. For a certain range of parameters, the new bilayer can only be stretched up to 30% before it ruptures. Membrane tension, density profiles, and the in-plane lipid diffusion coefficient of the new bilayer are discussed in detail. They find two kinds of finite size effects that influence the membrane tension: lateral finite size effects, for which larger membranes rupture at a smaller stretch, and transverse finite size effects, for which tensionless bilayers are more compact in larger systems. These finite size effects become rather small when the simulation box is sufficiently large.