Supercooled first order phase transitions are typical of theories where conformal symmetry is predominantly spontaneously broken. In these theories the fate of the flat scalar direction is highly sensitive to the size and the scaling dimension of the explicit breaking deformations. For a given deformation, the coupling must lie in a particular region to realize a supercooled first order phase transition. We identify the supercooling window in weakly coupled theories and derive a fully analytical understanding of its boundaries. Mapping these boundaries allows us to identify the deformations enlarging the supercooling window and to characterize their dynamics analytically. For completeness we also discuss strongly coupled conformal field theories with an holographic dual, where the complete characterization of the supercooling window is challenged by calculability issues.