Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
The rabbit has been widely used in immunology and infectiology. Rabbit immunoglobulins have been extensively studied, leading to the discovery of their idiotypes, allotypic diversity, and of the diversification of the primary repertoire by hyperconversion. Much less is known about rabbit T cell receptors (TR), especially TRA. This isotype is particularly important for innate-like T cells, which typically express invariant TRA (iTRA). The presence of such cells in the rabbit remains an enigma. Rabbit NKT cells seem to be very rare, and lagomorphs lack MAIT cells. TRAV1, the variable gene expressed in the iTRA of these cells across most mammals, and MR1, the MH1-like receptor that present riboflavin derivatives to MAIT cells, are missing in rabbit. An alternative iTRA has been identified, that may be expressed by new innate-like T cells. To facilitate TRA repertoire analyses in rabbit, we report here a full description of TRA and TRD loci and a subgroup definition based on IMGT R classification. Rabbit TRA rearrangements follow the same temporal pattern that is observed in mouse and human. Rare transcripts expressing TRDV/TRDD/TRDJ rearrangements spliced to TRAC were detected. TRA and TRD genes have been made available in IMGT and IMGT/HighV-QUEST, allowing easy analysis of TRA/TRD RepSeq.
The rabbit has been widely used in immunology and infectiology. Rabbit immunoglobulins have been extensively studied, leading to the discovery of their idiotypes, allotypic diversity, and of the diversification of the primary repertoire by hyperconversion. Much less is known about rabbit T cell receptors (TR), especially TRA. This isotype is particularly important for innate-like T cells, which typically express invariant TRA (iTRA). The presence of such cells in the rabbit remains an enigma. Rabbit NKT cells seem to be very rare, and lagomorphs lack MAIT cells. TRAV1, the variable gene expressed in the iTRA of these cells across most mammals, and MR1, the MH1-like receptor that present riboflavin derivatives to MAIT cells, are missing in rabbit. An alternative iTRA has been identified, that may be expressed by new innate-like T cells. To facilitate TRA repertoire analyses in rabbit, we report here a full description of TRA and TRD loci and a subgroup definition based on IMGT R classification. Rabbit TRA rearrangements follow the same temporal pattern that is observed in mouse and human. Rare transcripts expressing TRDV/TRDD/TRDJ rearrangements spliced to TRAC were detected. TRA and TRD genes have been made available in IMGT and IMGT/HighV-QUEST, allowing easy analysis of TRA/TRD RepSeq.
Background As one of “γδ-high” species, chicken is an excellent model for the study of γδ T cells in non-mammalian animals. However, a comprehensive characterization of the TCRγδ repertoire is still missing in chicken. The objective of this study was to characterize the expressed TCRγ repertoire in chicken thymus using high-throughput sequencing. Methods In this study, we first obtained the detailed genomic organization of the TCRγ locus of chicken based on the latest assembly of the red jungle fowl genome sequences (GRCg6a) and then characterized the TCRγ repertoire in the thymus of four chickens by using 5′ Rapid Amplification of cDNA Ends (5′ RACE) along with high-throughput sequencing (HTS). Results The chicken TCRγ locus contains a single Cγ gene, three functional Jγ segments and 44 Vγ segments that could be classified into six subgroups, each containing six, nineteen, nine, four, three and three members. Dot-plot analysis of the chicken TCRγ locus against itself showed that almost all the entire zone containing Vγ segments had arisen through tandem duplication events, and the main homology unit, containing 9 or 10 Vγ gene segments, has tandemly duplicated for four times. For the analysis of chicken TCRγ repertoire, more than 100,000 unique Vγ-region nucleotide sequences were obtained from the thymus of each chicken. After alignment to the germline Vγ and Jγ segments identified above, we found that the four chickens had similar repertoire profile of TCRγ. In brief, four Vγ segments (including Vγ3.7, Vγ2.13, Vγ1.6 and Vγ1.3) and six Vγ-Jγ pairs (including Vγ3.7-Jγ3, Vγ2.13-Jγ1, Vγ2.13-Jγ3, Vγ1.6-Jγ3, Vγ3.7-Jγ1 and Vγ1.6-Jγ1) were preferentially utilized by all four individuals, and vast majority of the unique CDR3γ sequences encoded 4 to 22 amino acids with mean 12.90 amino acids, which exhibits a wider length distribution and/or a longer mean length than CDR3γ of human, mice and other animal species. Conclusions In this study, we present the first in-depth characterization of the TCRγ repertoire in chicken thymus. We believe that these data will facilitate the studies of adaptive immunology in birds.
The domestic pig (Sus scrofa) is a species representative of the Suina, one of the four suborders within Cetartiodactyla. In this paper, we reported our analysis of the pig TRG locus in comparison with the loci of species representative of the Ruminantia, Tylopoda, and Cetacea suborders. The pig TRG genomic structure reiterates the peculiarity of the organization of Cetartiodactyla loci in TRGC “cassettes”, each containing the basic V-J-J-C unit. Eighteen genes arranged in four TRGC cassettes, form the pig TRG locus. All the functional TRG genes were expressed, and the TRGV genes preferentially rearrange with the TRGJ genes within their own cassette, which correlates the diversity of the γ-chain repertoire with the number of cassettes. Among them, the TRGC5, located at the 5′ end of the locus, is the only cassette that retains a marked homology with the corresponding TRGC cassettes of all the analyzed species. The preservation of the TRGC5 cassette for such a long evolutionary time presumes a highly specialized function of its genes, which could be essential for the survival of species. Therefore, the maintenance of this cassette in pigs confirms that it is the most evolutionarily ancient within Cetartiodactyla, and it has undergone a process of duplication to give rise to the other TRGC cassettes in the different artiodactyl species in a lineage-specific manner.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.