Motivated by the null results of the BSM searches in the post-Higgs era of the LHC, our current approach is to look for new physics shifting from theory driven search strategies to signature driven ones. One possible direction might come from investigating the long-lived particles (LLPs) present in various theoretical scenarios through the newly formed Lifetime frontier. In this talk, I discuss a non-sterile right-handed neutrino model consisting of EW-scale Majorana masses, having signals with large displaced vertices arising in both the fermion and scalar sectors.The characteristic features in this model, the displaced vertices, i.e. several charged tracks originating from a position separated from the proton interaction point has to be greater than a mm and can be as long as order of centimeters. These events originating from the decays of the mirror fermions produce promising signatures at the LHC environment due to the low associated backgrounds. We discuss the experimental implications and possible search strategies in this framework and LHCs potential to unravel these underlying events.