In view of the problem that the distributed optical fiber-based deformation reconstruction method can produce serious accumulated errors, this paper developed a smart fiber optic sensor belt that employs a carbon-fiber composite material as the matrix and strain-sensing fiber optics as the sensing element and is based on the key-point dip angle information acquired by a high-precision tilt sensor. The method of in situ correction for the cumulative error of circumferential deformation was investigated, and the particle swarm optimization algorithm was adopted to perform in situ correction for the reconstructed circumferential deformation field of the sensor belt to reduce the cumulative measurement error of the circumferential deformation field. Simulations and indoor tests were systematically performed. After the correction, the errors of the simulation and indoor tests were reduced from 210.83 and 235.82 mm to 2.17 and 4.04 mm, respectively, which verified the effectiveness and accuracy of the aforementioned method.