Extended cubic B-spline collocation method is formulated to solve the Benjamin-Bona-Mahony equation without linearization. The Besse relaxation scheme is applied on the nonlinear terms and therefore transforms the equation into a systemof two linear equations. The time derivative is discretized using Forward Difference Approximation whereas the spatial dimension is approximated using extended cubic B-spline function. Applying the von-Neumann stability analysis, the proposed technique are shown unconditionally stable. Two numerical examples are presented and the results are compared with the exact solutions and recent methods.