Abstract-A cognitive detect and avoid radar system based on chaotic UWB-MIMO waveform design to enable autonomous UAV navigation is presented. A Dirichlet-Process-Mixture-Model (DPMM) based Bayesian clustering approach to discriminate extended targets and a Change-Point (CP) detection algorithm are applied for the autonomous tracking and identification of potential collision threats. A DPMM based clustering mechanism does not rely upon any a priori target scene assumptions and facilitates online multivariate data clustering/classification for an arbitrary number of targets. Furthermore, this radar system utilizes a cognitive mechanism to select efficient c haotic waveforms to facilitate enhanced target detection and discrimination. We formulate the CP mechanism for the online tracking of target trajectories which present a collision threat to the UAV navigation and thus we supplement the conventional Kalman filter based tracking. Simulation results demonstrate a significant performance improvement for the DPMM-CP assisted detection as compared with direct generalized likelihood ratio based detection. Specifically, w e o bserve a 4 d B p erformance g ain i n target detection over conventional fixed U WB w aveforms a nd superior collision avoidance capability offered by the joint DPMM-CP mechanism.