2011
DOI: 10.1587/transinf.e94.d.2503
|View full text |Cite
|
Sign up to set email alerts
|

Error Corrective Fusion of Classifier Scores for Spoken Language Recognition

Abstract: SUMMARYThis paper investigates a new method for fusion of scores generated by multiple classification sub-systems that help to further reduce the classification error rate in Spoken Language Recognition (SLR). In recent studies, a variety of effective classification algorithms have been developed for SLR. Hence, it has been a common practice in the National Institute of Standards and Technology (NIST) Language Recognition Evaluations (LREs) to fuse the results from several classification sub-systems to boost t… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 38 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?