Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Purpose Patient‐specific quality assurance (QA) for intensity‐modulated radiation therapy (IMRT) is a ubiquitous clinical procedure, but conventional methods have often been criticized as being insensitive to errors or less effective than other common physics checks. Recently, there has been interest in the application of radiomics, quantitative extraction of image features, to radiotherapy QA. In this work, we investigate a deep learning approach to classify the presence or absence of introduced radiotherapy treatment delivery errors from patient‐specific QA. Methods Planar dose maps from 186 IMRT beams from 23 IMRT plans were evaluated. Each plan was transferred to a cylindrical phantom CT geometry. Three sets of planar doses were exported from each plan corresponding to (a) the error‐free case, (b) a random multileaf collimator (MLC) error case, and (c) a systematic MLC error case. Each plan was delivered to the electronic portal imaging device (EPID), and planned and measured doses were used to calculate gamma images in an EPID dosimetry software package (for a total of 558 gamma images). Two radiomic approaches were used. In the first, a convolutional neural network with triplet learning was used to extract image features from the gamma images. In the second, a handcrafted approach using texture features was used. The resulting metrics from both approaches were input into four machine learning classifiers (support vector machines, multilayer perceptrons, decision trees, and k‐nearest‐neighbors) in order to determine whether images contained the introduced errors. Two experiments were considered: the two‐class experiment classified images as error‐free or containing any MLC error, and the three‐class experiment classified images as error‐free, containing a random MLC error, or containing a systematic MLC error. Additionally, threshold‐based passing criteria were calculated for comparison. Results In total, 303 gamma images were used for model training and 255 images were used for model testing. The highest classification accuracy was achieved with the deep learning approach, with a maximum accuracy of 77.3% in the two‐class experiment and 64.3% in the three‐class experiment. The performance of the handcrafted approach with texture features was lower, with a maximum accuracy of 66.3% in the two‐class experiment and 53.7% in the three‐class experiment. Variability between the results of the four machine learning classifiers was lower for the deep learning approach vs the texture feature approach. Both radiomic approaches were superior to threshold‐based passing criteria. Conclusions Deep learning with convolutional neural networks can be used to classify the presence or absence of introduced radiotherapy treatment delivery errors from patient‐specific gamma images. The performance of the deep learning network was superior to a handcrafted approach with texture features, and both radiomic approaches were better than threshold‐based passing criteria. The results suggest that radiomic QA is a promising direction f...
Purpose Patient‐specific quality assurance (QA) for intensity‐modulated radiation therapy (IMRT) is a ubiquitous clinical procedure, but conventional methods have often been criticized as being insensitive to errors or less effective than other common physics checks. Recently, there has been interest in the application of radiomics, quantitative extraction of image features, to radiotherapy QA. In this work, we investigate a deep learning approach to classify the presence or absence of introduced radiotherapy treatment delivery errors from patient‐specific QA. Methods Planar dose maps from 186 IMRT beams from 23 IMRT plans were evaluated. Each plan was transferred to a cylindrical phantom CT geometry. Three sets of planar doses were exported from each plan corresponding to (a) the error‐free case, (b) a random multileaf collimator (MLC) error case, and (c) a systematic MLC error case. Each plan was delivered to the electronic portal imaging device (EPID), and planned and measured doses were used to calculate gamma images in an EPID dosimetry software package (for a total of 558 gamma images). Two radiomic approaches were used. In the first, a convolutional neural network with triplet learning was used to extract image features from the gamma images. In the second, a handcrafted approach using texture features was used. The resulting metrics from both approaches were input into four machine learning classifiers (support vector machines, multilayer perceptrons, decision trees, and k‐nearest‐neighbors) in order to determine whether images contained the introduced errors. Two experiments were considered: the two‐class experiment classified images as error‐free or containing any MLC error, and the three‐class experiment classified images as error‐free, containing a random MLC error, or containing a systematic MLC error. Additionally, threshold‐based passing criteria were calculated for comparison. Results In total, 303 gamma images were used for model training and 255 images were used for model testing. The highest classification accuracy was achieved with the deep learning approach, with a maximum accuracy of 77.3% in the two‐class experiment and 64.3% in the three‐class experiment. The performance of the handcrafted approach with texture features was lower, with a maximum accuracy of 66.3% in the two‐class experiment and 53.7% in the three‐class experiment. Variability between the results of the four machine learning classifiers was lower for the deep learning approach vs the texture feature approach. Both radiomic approaches were superior to threshold‐based passing criteria. Conclusions Deep learning with convolutional neural networks can be used to classify the presence or absence of introduced radiotherapy treatment delivery errors from patient‐specific gamma images. The performance of the deep learning network was superior to a handcrafted approach with texture features, and both radiomic approaches were better than threshold‐based passing criteria. The results suggest that radiomic QA is a promising direction f...
To accomplish the 3D dose verification to IMRT plan by incorporating DVH information and gamma passing rates (GPs) (DVH_GPs) so as to better correlate the patient-specific quality assurance (QA) results with clinically relevant metrics. Materials and methods: DVH_GPs analysis was performed to specific structures of 51 intensity-modulated radiotherapy (IMRT) treatment plans (17 plans each for oropharyngeal neoplasm, esophageal neoplasm, and cervical neoplasm) with Delta4 3D dose verification system. Based on the DVH action levels of 5% and GPs action levels of 90% (3%/2 mm), the evaluation results of DVH_GPs analysis were categorized into four regions as follows: the true positive (TP) (%DE> 5%, GPs < 90%), the false positive (FP) (%DE ≤ 5%, GPs < 90%), the false negative (FN) (%DE> 5%, GPs ≥ 90%), and the true negative (TN) (%DE ≤ 5%, GPs ≥ 90%). Considering the actual situation, the final patient-specific QA determination was made based on the DVH_GPs evaluation results. In order to exclude the impact of Delta4 phantom on the DVH_GPs evaluation results, 5 cm phantom shift verification was carried out to structures with abnormal results (femoral heads, lung, heart). Results: In DVH_GPs evaluation, 58 cases with FN, 5 cases with FP, and 2 cases with TP were observed. After the phantom shift verification, the extremely abnormal FN of both lung (%DE = 21.52%±8.20%) and heart (%DE = 19.76%) in the oropharyngeal neoplasm plans and of the bilateral formal heads (%DE = 26.41%±13.45%) in cervical neoplasm plans disappeared dramatically. DVH_GPs analysis was performed to all evaluation results in combination with clinical treatment criteria. Finally, only one TP case from the oropharyngeal neoplasm plans and one FN case from the esophageal neoplasm plans did not meet the treatment requirements, so they needed to be replanned. Conclusion: The proposed DVH_GPs evaluation method first make up the deficiency of conventional gamma analysis regarding intensity information and space information. Moreover, it improves the correlation between the patient-specific QA results and clinically relevant metrics. Finally, it can distinguish the TP, TN, FP, and
In order to deliver accurate and safe treatment to cancer patients in radiation therapy using advanced techniques such as intensity modulated radiation therapy (IMRT) and volumetric‐arc radiation therapy (VMAT), patient specific quality assurance (QA) should be performed before treatment. IMRT/VMAT dose measurements in a phantom using various devices have been clinically adopted as standard method for QA. This approach allows the verification of the accuracy of the dose calculation, data transfer, and the delivery system. However, patient‐specific QA procedures are expensive and require significant time and effort by the physicists. Over the past 5 years, machine learning (ML) and deep learning (DL) algorithms for predictions of IMRT/VMAT QA outcome have been investigated. Various ML and DL models have shown promising prediction accuracy and a high potential as time‐efficient virtual QA tool. In this paper, we review the ML and DL based models that were developed for patient specific IMRT and VMAT QA outcome predictions from algorithmic and clinical applicability perspectives. We focus on comparing the algorithms, the dataset sizes, the input parameters and features, the QA outcome prediction approaches, the validation, the performance, the clinical applicability, and the potential clinical impact. In addition, we discuss the present challenges as well as the future directions in the implementation of these models. To the best of our knowledge, this is the first review on the application of ML and DL based models in IMRT/VMAT QA predictions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.