In this article, we discuss the numerical solution of the Stokes and Navier-Stokes equations completed by nonlinear slip boundary conditions of friction type in two and three dimensions. To solve the Stokes system, we first reduce the related variational inequality into a saddle point-point problem for a well chosen augmented Lagrangian. To solve this saddle point problem we suggest an alternating direction method of multiplier together with finite element approximations. The solution of the Navier Stokes system combines finite element approximations, time discretization by operator splitting and augmented Lagrangian method. Numerical experiment results for two and three dimensional flow confirm the interest of these approaches.