2015
DOI: 10.1016/j.apnum.2015.08.001
|View full text |Cite
|
Sign up to set email alerts
|

Error estimates for the interpolating moving least-squares method in n -dimensional space

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1
1

Citation Types

0
15
0
1

Year Published

2016
2016
2022
2022

Publication Types

Select...
10

Relationship

1
9

Authors

Journals

citations
Cited by 65 publications
(16 citation statements)
references
References 76 publications
0
15
0
1
Order By: Relevance
“…In statistical and numerical analysis, Lagrange methods are used for polynomial interpolation. For a given number of points (xj, yj) , the Lagrange polynomial is the polynomial of lowest degree which supposes the value yj at each value xj , and it can be calculated using equations from ( 11) to ( 17) (Sun et al, 2015).…”
Section: B the Lagrange Interpolationmentioning
confidence: 99%
“…In statistical and numerical analysis, Lagrange methods are used for polynomial interpolation. For a given number of points (xj, yj) , the Lagrange polynomial is the polynomial of lowest degree which supposes the value yj at each value xj , and it can be calculated using equations from ( 11) to ( 17) (Sun et al, 2015).…”
Section: B the Lagrange Interpolationmentioning
confidence: 99%
“…移动最小二乘法(Moving Least-Squares Approximation, MLS)被广泛应用于无网格方法的形函数构造, 其泛函为加权最佳平方逼近形式, 因而有较高的计算 精度; 程玉民等人 [10] 提出了改进的移动最小二乘法, 通 过对基函数的正交化, 克服了移动最小二乘法易形成 病态方程组的缺点. 为了解决无单元Galerkin方法等 无网格方法不能直接施加本质边界条件的问题, Wang 等人 [11] 和Sun等人 [12] 建立了移动最小二乘插值法, 并 研究了其误差分析理论. 为了解决无单元Galerkin方 法等无网格方法计算量大的问题, Cheng等人 [13][14][15] [16] 建立了具有明确数学和物理意义的泛函, 提出了改进…”
Section: 王斌骅等 中国科学: 物理学 力学 天文学 2017年 第47卷 第9期unclassified
“…Based on IMLS, the interpolating element-free Galerkin (IEFG) method [41] and other interpolation-type meshless methods [32,[42][43][44][45] were proposed. Wang et al studied the error convergence of the IMLS method [46,47]. The meshless method based on the IMLS method has a good calculation effect [48][49][50][51].…”
Section: Introductionmentioning
confidence: 99%