Error Model and Forecasting Method for Electronic Current Transformers Based on LSTM
Abstract:As an important metering apparatus at the trade settlement gate in intelligent substations, the operating error of electronic current transformers can have an important impact on the electric energy trade settlement, so it is necessary to predict the error state of electronic current transformers. In this paper, a Long Short-Term Memory (LSTM) neural network is used to construct an error prediction model for electronic current transformers, characterizing their errors in the form of multiple input variables an… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.