Long noncoding RNAs (lncRNAs) can trigger repressive chromatin, but how they recruit silencing factors remains unclear. In Schizosaccharomyces pombe, heterochromatin assembly on transcribed noncoding pericentromeric repeats requires both RNAi and RNAi-independent mechanisms. In Saccharomyces cerevisiae, which lacks a repressive chromatin mark (H3K9me [methylated Lys9 on histone H3]), unstable ncRNAs are recognized by the RNA-binding protein Nrd1. We show that the S. pombe ortholog Seb1 is associated with pericentromeric lncRNAs. Individual mutation of dcr1 + (Dicer) or seb1 + results in equivalent partial reductions of pericentromeric H3K9me levels, but a double mutation eliminates this mark. Seb1 functions independently of RNAi by recruiting the NuRD (nucleosome remodeling and deacetylase)-related chromatin-modifying complex SHREC (Snf2-HDAC [histone deacetylase] repressor complex).Supplemental material is available for this article.Received November 1, 2012; revised version accepted August 7, 2013. A major unsolved question in chromatin biology is how long intergenic noncoding RNAs (lincRNAs) trigger the formation of repressed chromatin. A large number of mammalian lincRNAs have been identified by systematic studies ). Many of these ncRNAs associate with chromatin-modifying complexes (Khalil et al. 2009). Multiple models have been proposed for how these ncRNAs are recognized and recruit chromatinmodifying factors, but little is understood mechanistically (Guttman and Rinn 2012).In Schizosaccharomyces pombe, pericentromeric heterochromatin assembly is promoted by transcription of the dg and dh repeat sequences by RNA polymerase II (Pol II) (Djupedal et al. 2005;Kato et al. 2005). The corresponding long ncRNAs (lncRNAs) are converted into dsRNAs and processed into siRNAs by the combined action of RNA-directed RNA polymerase complex (RDRC) and Dicer (Dcr1) (Verdel et al. 2009;Lejeune and Allshire 2011). siRNAs produced by Dicer are bound by Argonaute (Ago1), a component of the RNA-induced transcriptional silencing (RITS) complex, and together they promote both degradation of pericentromeric ncRNAs and transcriptional silencing via repressive histone methylation (Verdel et al. 2004). These complexes in turn recruit the Clr4 methyltransferase complex (CLRC), which methylates Lys9 on histone H3 (H3K9me) (Nakayama et al. 2001;Zhang et al. 2008). The methyl mark serves as a binding platform for the repressive HP1 proteins Swi6 and Chp2 (Thon and Verhein-Hansen 2000;Bannister et al. 2001;Fischer et al. 2009). Both proteins promote the recruitment of SHREC (Snf2-HDAC [histone deacetylase] repressor complex) to pericentromeric heterochromatin (Sugiyama et al. 2007;Sadaie et al. 2008). Moreover, Chp2 has been found to associate with SHREC to form the SHREC2 complex (SHREC complex associated with Chp2) (Motamedi et al. 2008). The core of SHREC consists of silencing factors Clr1 and Clr2, the HDAC Clr3, and the putative chromatin-remodeling enzyme Mit1 (Sugiyama et al. 2007). SHREC and SHREC2 resemble the mammalian nucle...