Drug delivery using natural biological carriers, especially erythrocytes, is a rapidly developing field. Such erythrocytes can act as carriers that prolong the drug's action due to its gradual release from the carrier; as bioreactors with encapsulated enzymes performing the necessary reactions, while remaining inaccessible to the immune system and plasma proteases; or as a tool for targeted drug delivery to target organs, primarily to cells of the reticuloendothelial system, liver and spleen. To date, erythrocytes have been studied as carriers for a wide range of drugs, such as enzymes, antibiotics, anti-inflammatory, antiviral drugs, etc., and for diagnostic purposes (e.g., magnetic resonance imaging). The review focuses only on drugs loaded inside erythrocytes, defines the main lines of research for erythrocytes with bioactive substances, as well as the advantages and limitations of their application. Particular attention is paid to in vivo studies, opening-up the potential for the clinical use of drugs encapsulated into erythrocytes.Pharmaceutics 2020, 12, 276 2 of 44 property of RBCs allows to load them with biologically active substances of different molecular weights. For these reasons, erythrocytes are promising biocompatible cells for drug delivery.The methods for incorporating various substances into red blood cells differ in the way that substances penetrate the cells. The cause of permeability may be the pores' formation in the cell membrane due to a physical exposure (high voltage electric pulse [10,11] or ultrasound [12]). Drug molecules can also enter the RBCs by endocytosis in the presence of certain chemical compounds (for example, primaquine [13], vinblastine, chlorpromazine, hydrocortisone or tetracaine [14,15]), or using the cell-penetrating peptides bounded to the compound that should be encapsulated [16]. However, the most popular are different variants of osmotic methods.In some cases, RBCs are first exposed to a hyperosmotic pulse of a low molecular weight substance that penetrates very well through the cell membrane (for example, dimethyl sulfoxide (DMSO) [17,18] or glucose [19,20]). After washing the cells, which decreases the external concentration of these compounds and creates a gradient of their concentration between both sides of the RBC membrane, the target drug is introduced into the external volume. Water with this drug begins to enter into the cells to decrease the osmotic pressure there. The process ends when the gradient of DMSO or glucose disappears. The pores close and part of the drug remains into RBCs. Other, the most popular of the osmotic methods are hypoosmotic. These methods are based on creating a hypotonic environment around RBCs, which causes swelling of the cells and opening pores in the cellular membrane, through which therapeutic compounds can penetrate RBCs. Then, a hypertonic solution is introduced into the cell suspension. The pores close, the cells restore their original size, trapping the drug molecules inside the cell. Osmotic methods are divided into severa...