We prove CLTs for biased randomly trapped random walks in one dimension. In particular, we will establish an annealed invariance principal by considering a sequence of regeneration times under the assumption that the trapping times have finite second moment. In a quenched environment, an environment dependent centring is determined which is necessary to achieve a central limit theorem. As our main motivation, we apply these results to biased walks on subcritical Galton-Watson trees conditioned to survive and prove a tight bound on the bias required to obtain such limiting behaviour.MSC2010 subject classifications: Primary 60K37, 60F05, 60F17; secondary 60J80.