Functional interactions of the E. coli PriA helicase 181N-terminal domain with the DNA and nucleotide cofactors have been quantitatively examined. The isolated 181N-terminal domain forms a stable dimer in solution, most probably reflecting the involvement of the domain in specific cooperative interactions of the intact PriA protein - dsDNA complex. Only one monomer of the domain dimer binds the DNA, i.e., the dimer has one effective DNA-binding site. Although the total site-size of the dimer - ssDNA complex is ~13 nucleotides, the DNA-binding subsite engages in direct interactions ~5 nucleotides. A small number of interacting nucleotides indicates that the DNA-binding subsites of the PriA helicase, i.e., the strong subsite on the helicase domain and the weak subsite on the N-terminal domain, are spatially separated in the intact enzyme. Contrary to current views, the subsite has only a slight preference for the 3′-end OH group of the ssDNA and lacks any significant base specificity, although it has a significant dsDNA affinity. Unlike the intact helicase, the DNA-binding subsite of the isolated domain is in an open conformation, indicating the presence of the direct helicase domain - N-terminal domain interactions. The discovery that the 181N-terminal domain possesses a nucleotide-binding site places the allosteric, weak nucleotide-binding site of the intact PriA on the N-terminal domain. The specific ADP effect on the domain DNA-binding subsite indicates that in the intact helicase, the bound ADP not only opens the DNA-binding subsite but also increases its intrinsic DNA affinity.