2023
DOI: 10.3390/brainsci13040589
|View full text |Cite
|
Sign up to set email alerts
|

eSEE-d: Emotional State Estimation Based on Eye-Tracking Dataset

Abstract: Affective state estimation is a research field that has gained increased attention from the research community in the last decade. Two of the main catalysts for this are the advancement in the data analysis using artificial intelligence and the availability of high-quality video. Unfortunately, benchmarks and public datasets are limited, thus making the development of new methodologies and the implementation of comparative studies essential. The current work presents the eSEE-d database, which is a resource to… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0

Year Published

2023
2023
2025
2025

Publication Types

Select...
5

Relationship

0
5

Authors

Journals

citations
Cited by 6 publications
(1 citation statement)
references
References 73 publications
0
1
0
Order By: Relevance
“…Next, we will describe in more detail the few studies using deep learning. Rello et al [12] SVM Dyslexia 1135 (97) Benfatto et al [5] SVM Dyslexia 185 (185) Smymakis et al [11] Bayesian Dyslexia 66 (66) Asvestopoulou et al [6] Multiple Dyslexia 66 (66) Prabha et al [7] SVM Dyslexia 185 (185) Bixler et al [13] Multiple Mind wondering 4977 (178) Skaramagkas et al [14] MLP Predicting emotional State -(48) Jothiprabha et al [15] k-mean Dyslexia severity 97 (97) Rizzo et al [16] Multiple Detecting Cognitive Interference 64 (64) Ktistakis et al [17] Multiple Congitive workload estimation 47 (47) Vajs et al [18] Multiple Dyslexia 378 (30) Stephen et al [19] Bayesian Mind wondering 384 (32) Networks…”
Section: Related Work 21 Traditional Machine Learning Methodsmentioning
confidence: 99%
“…Next, we will describe in more detail the few studies using deep learning. Rello et al [12] SVM Dyslexia 1135 (97) Benfatto et al [5] SVM Dyslexia 185 (185) Smymakis et al [11] Bayesian Dyslexia 66 (66) Asvestopoulou et al [6] Multiple Dyslexia 66 (66) Prabha et al [7] SVM Dyslexia 185 (185) Bixler et al [13] Multiple Mind wondering 4977 (178) Skaramagkas et al [14] MLP Predicting emotional State -(48) Jothiprabha et al [15] k-mean Dyslexia severity 97 (97) Rizzo et al [16] Multiple Detecting Cognitive Interference 64 (64) Ktistakis et al [17] Multiple Congitive workload estimation 47 (47) Vajs et al [18] Multiple Dyslexia 378 (30) Stephen et al [19] Bayesian Mind wondering 384 (32) Networks…”
Section: Related Work 21 Traditional Machine Learning Methodsmentioning
confidence: 99%