Using polymer daily becomes increasingly extensive; the many characteristics of hydrogel lead to a wide range of uses, particularly in biomedical applications. Hydrogel films were made from a variety of materials in this investigation. Casting techniques and room temperature drying were used to make PVP- CMC- Gums films based on hydrogels, however, the effects of adding bentonite clay were needed. SEM, FTIR, XRD, TGA, swelling, solubility, contact angle, and a variety of other studies were used to illustrate and analyze a variety of physical, mechanical, thermal, and many characteristics. The major findings revealed new peaks, which indicate the creation of cross-linking bonds, which are the primary cause of capsulation and release characteristics, indicating that these films might be utilized in drug delivery and a variety of other applications. The PCXB film has the best color, surface hydrophobicity, solubility, and swelling properties, while the PCGB film has the greatest biodegradability and permeability results, and both films have strong thermal, mechanical, and releasing properties. As a result, adding bentonite clay to hydrogel films improves all of their characteristics, making them suitable for a variety of biomedical applications such as dentistry root filling, tissue engineering, contact lenses, and bandages.