Image-guided surgery using XR (extended reality: VR/AR/MR) technology has the potential to revolutionize the field of surgery by improving surgical accuracy, reducing procedure time, and enhancing communication and collaboration among the surgical team. We have developed a web-based system, Holoeyes, integrating XR, AI, and metaverse technology to facilitate holographic image-guided surgery. Holoeyes extracts organ shape data from CT or MRI scans and renders them with positional information to obtain X, Y, and Z coordinates. These coordinates are then converted into polygonal information for use in XR technology. The medical device, Holoeyes MD, was developed to create XR applications for surgical planning and navigation. It provides an immersive experience for the surgical team, improving both accuracy and efficiency. The integration of the metaverse in surgery allows for spatial conferencing and review of training, and the avatars replicate the hand and eye movements of the actual surgical procedure. Our Holoeyes system has already been utilized in numerous institutions for pre-and post-operative conferences, surgical planning, and surgical records, with multiple people wearing the headset and sharing information about the pathology, extent of resection, and layers of dissection from all directions. We conducted a systematic review of the literature to investigate the effectiveness of Holoeyes, focusing on the use of XR and the metaverse in surgery. We believe that Holoeyes has the potential to become an indispensable tool in the field of surgery, and we encourage further research and development in this field.