Identification of metabolic engineering targets for the enhancement of 1,4-butanediol production in recombinant E. coli using largescale kinetic models, Metabolic Engineering, http://dx.doi.org/10. 1016/j.ymben.2016.01.009 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting galley proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. Entities) to analyze the physiology of recombinant E. coli producing 1,4-butanediol (BDO) and to identify potential strategies for improved production of BDO. The framework allowed us to integrate data across multiple levels and to construct a population of large-scale kinetic models despite the lack of available information about kinetic properties of every enzyme in the metabolic pathways. We analyzed these models and we found that the enzymes that primarily control the fluxes leading to BDO production are part of central glycolysis, the lower branch of tricarboxylic acid (TCA) cycle and the novel BDO production route. Interestingly, among the enzymes between the glucose uptake and the BDO pathway, the enzymes belonging to the lower branch of TCA cycle have been identified as the most important for improving BDO production and yield. We also quantified the effects of changes of the target enzymes on other intracellular states like energy charge, cofactor levels, redox state, cellular growth, and byproduct formation.Independent earlier experiments on this strain confirmed that the computationally 3 obtained conclusions are consistent with the experimentally tested designs, and the findings of the present studies can provide guidance for future work on strain improvement. Overall, these studies demonstrate the potential and effectiveness of ORACLE for the accelerated design of microbial cell factories.