Supply chain (SC) activities generate huge amount of data that can be used in decision making processes. However, proper data analytics techniques are required to combine, organize, and analyze data from different sources and produce required insights available for decision makers. These techniques promote analytical reasoning of the events and patterns hidden in the data using visualizations, so-called Visual Analytics (VA). Although there is a large number of VA systems to facilitate the process of analysis and decision making, there is a lack of an adequate overview of what already exists in this area for SC management. To address that need, we conducted a systematic literature review to analyze the state of the art in SC VA systems. Particularly, we focus on use cases, the type of the decisions that a VA system intended to support, the type of visualizations employed, the type of analytics used, and the data that has been used for analysis. The goal of this study is to provide SC and VA researchers with an overview of the works carried out in the field of SC VA, helping them to observe latest trends and to recognize existing gaps that need further investigation. Consequently, a mapping between decisions of various SC business processes and their reciprocal visualization techniques and tactics have been provided. Adding to that, VA applications and use cases in SC are identified based on the SC Operation Reference (SCOR) model and underlying decision areas are recognized.