Ulcerative colitis (UC) is a common autoimmune disease worldwide. Circular RNA (circRNA) is a type of noncoding ribonucleic acids (ncRNAs). In addition to their roles in numerous biological processes, circRNAs are also linked to a vast range of diseases including UC. Although previous studies have examined many circRNAs, the physiological and pathological roles of the circRNA-associated competing endogenous RNA (ceRNA) network in UC remain unclear. Thus, we constructed a circRNA-miRNA-mRNA network based on the ceRNA hypothesis by analyzing data from the National Center for Biotechnology Information Gene Expression Omnibus (NCBI-GEO) database. Genes with higher degree values than others in the ceRNA network were selected as central nodes when constructing the corresponding core subnetworks. To fully understand the biological function of the ceRNA network, we entered all differentially expressed mRNAs (DEmRNAs) from the ceRNA network into the Database for Annotation and Integrated Discovery (DAVID), which was used to perform Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses. We further entered DEmRNAs into the STRING database for protein-protein interaction (PPI) network analysis. The results elucidated that the ceRNA network comprised 403 circRNA nodes, 5 miRNA nodes, 138 mRNA nodes, and 559 edges. Three core ceRNA subnetworks centered on hsa-miR-342-3p, hsa-miR-199a-5p, and hsa-miR-142-3p were reconstructed in this study. GO and KEGG enrichment analyses identified 167 enriched GO categories and 14 enriched KEGG pathway terms. The core PPI network was composed of 15 core targets, of which CD44, HIF1A, and MMP2 were the most significant. In summary, 3 hub miRNAs (hsa-miR-342-3p, hsa-miR-199a-5p, hsa-miR-142-3p) and 3 hub genes (CD44, HIF1A, and MMP2) might play an important role in the development of UC. These hub nodes, first proposed here, might also be used as potential diagnostic markers and therapeutic targets.